

VORONOI BASED N-DIMENSIONAL PARAMETER OPTIMIZATION FOR FAULT INJECTION ATTACKS

Conference Center Prag, Czech Republic 10.09.2023

{marius.eggert|marc.stoettinger}@hs-rm.de

MOTIVATION

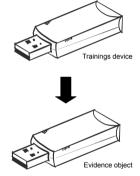
- $\rightarrow\,$ Evidence from digital electronic devices is becoming increasingly important in court
- $\rightarrow\,$ More and more devices implement various security mechanisms to protect user data
- $\rightarrow\,$ Security mechanisms must be bypassed to obtain data from victims or perpetrators
- ightarrow Besides software exploits, various hardware attacks exist
 - $\rightarrow\,$ invasive e.g. Microprobing
 - $\rightarrow\,$ semi-invasive e.g. Laser Fault Injection
 - $\rightarrow\,$ non-invasive e.g. Voltage Glitching

Based on Image by rocket pixel on Freepik

Introduction

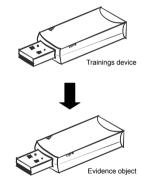
PARAMETER OPTIMIZATION CHALLENGES

- ightarrow Non-invasive attacks use laboratory equipment to manipulate the target's environment
- ightarrow Semi-invasive attacks also modify equipment parameters but require package removal
- ightarrow Advanced attacks on modern hardware require multiple devices
- \rightarrow Professional devices further increase parameter granularity


Problem

Brute force iteration of all parameter combinations not feasible!

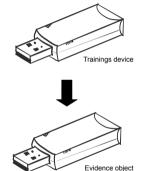
Introduction


SPECIFIC CHALLENGES FOR LAW ENFORCEMENT

- Data corruption and data loss are to be avoided at all cost \rightarrow
 - \rightarrow Intensive tests on comparison device
 - \rightarrow The attack must work across devices
 - \rightarrow Attack should at best be successful on the first try

SPECIFIC CHALLENGES FOR LAW ENFORCEMENT

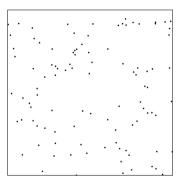
- $\rightarrow\,$ Data corruption and data loss are to be avoided at all cost
 - $\rightarrow~$ Intensive tests on comparison device
 - $\rightarrow~$ The attack must work across devices
 - $\rightarrow\,$ Attack should at best be successful on the first try
- $\rightarrow\,$ Seldom access to intellectual property of the device vendors
 - $\rightarrow\,$ Typically black-box scenarios
 - $\rightarrow\,$ Missing documentation of the device and its chips
 - $\rightarrow~$ No insight about countermeasures
 - $\rightarrow~$ Unknown typical operating conditions


Based on Image by rocket pixel on Freepik

SPECIFIC CHALLENGES FOR LAW ENFORCEMENT

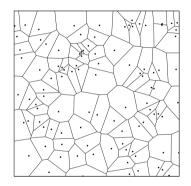
- $\rightarrow\,$ Data corruption and data loss are to be avoided at all cost
 - $\rightarrow\,$ Intensive tests on comparison device
 - $\rightarrow~$ The attack must work across devices
 - $\rightarrow\,$ Attack should at best be successful on the first try
- $\rightarrow\,$ Seldom access to intellectual property of the device vendors
 - \rightarrow Typically black-box scenarios
 - $\rightarrow\,$ Missing documentation of the device and its chips
 - $\rightarrow~$ No insight about countermeasures
 - $\rightarrow~$ Unknown typical operating conditions

Challenge

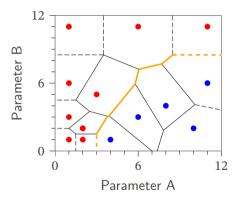

We need to find the overall most reliable parameter combination across devices not only just one that worked once!

Based on Image by rocket pixel on Freepik

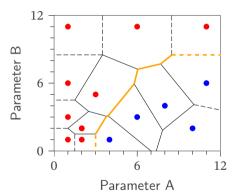
Idea


VORONOI TESSELLATION

Idea

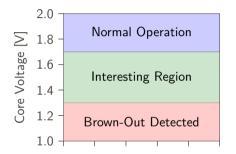

VORONOI TESSELLATION

- $\rightarrow\,$ Voronoi tessellation partitions a (multidimensional) space into cells
- $\rightarrow\,$ Each cell surrounds one input point
- $\rightarrow\,$ All coordinates that are closer to a cells point than to all other points are contained
- $\rightarrow\,$ Cells are separated by lines, even in high dimensions


VORONOI TESSELLATION FOR POINT OF INTEREST DETERMINATION

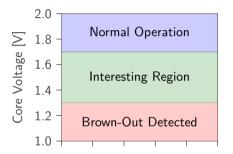
- $\rightarrow\,$ Can be used for optimization during fault injection attacks
 - $\rightarrow\,$ Results define input points
 - $\rightarrow\,$ Edges define border between results
 - $\rightarrow\,$ Borders between result classes define polytope of interest

VORONOI TESSELLATION FOR POINT OF INTEREST DETERMINATION

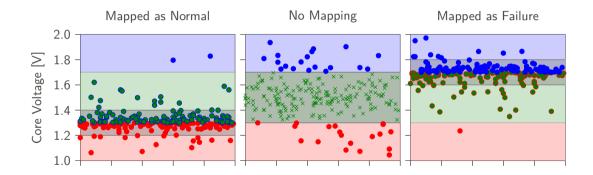

- $\rightarrow\,$ Can be used for optimization during fault injection attacks
 - $\rightarrow\,$ Results define input points
 - $\rightarrow\,$ Edges define border between results
 - $\rightarrow\,$ Borders between result classes define polytope of interest
- $\rightarrow\,$ Result improves with each point added
- \rightarrow Identifies successful parameters between classes
- $\rightarrow\,$ Creates a cartography of the parameter space

Result Improvement

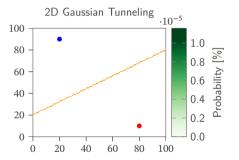
MAPPING OPTIONS


- $\rightarrow\,$ Failures are more time consuming
- $\rightarrow\,$ Some setups require long restart times
- $\rightarrow\,$ Tests leading to failures should be avoided

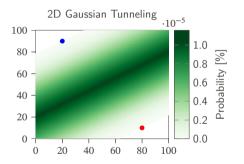
Result Improvement


MAPPING OPTIONS

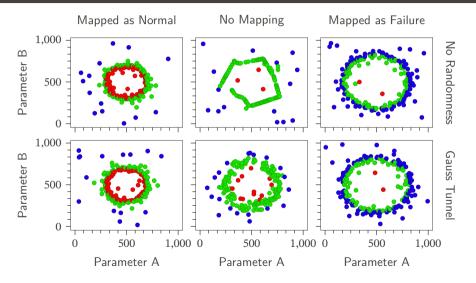
- $\rightarrow\,$ Failures are more time consuming
- $\rightarrow\,$ Some setups require long restart times
- $\rightarrow\,$ Tests leading to failures should be avoided
- $\rightarrow\,$ We can shift the polytope of interest by interpreting successful results as failures.


Result Improvement

2D MAPPING OPTIONS VISUALIZATION

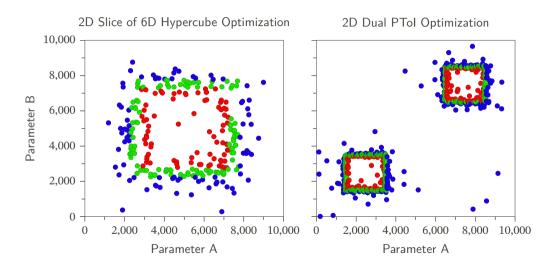

GAUSSIAN TUNNELING

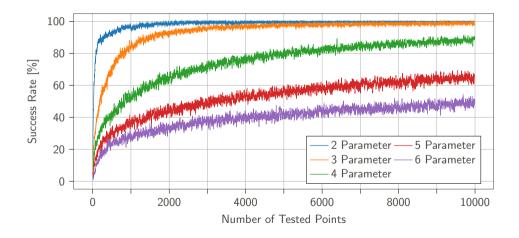
- $\rightarrow\,$ Voronoi tessellation provides edges
- $\rightarrow\,$ Edges are considered the most interesting parameter combinations
- $\rightarrow\,$ The global maximum can still be next to the edge



GAUSSIAN TUNNELING

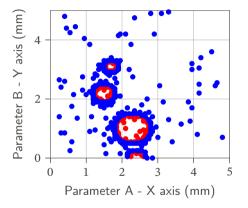
- $\rightarrow\,$ Voronoi tessellation provides edges
- $\rightarrow\,$ Edges are considered the most interesting parameter combinations
- $\rightarrow\,$ The global maximum can still be next to the edge
- $\rightarrow\,$ We can perform only one test at a time
 - $\rightarrow\,$ Exploration space expansion through Gaussian tunneling
 - $\rightarrow\,$ Speedup through randomized edge point selection


MAPPING AND TUNNELING SIMULATION


SIMULATION SETUP

- $\rightarrow\,$ Simulations uses hypercubic result space
- ightarrow Each dimension is a uniformly distributed parameter
 - $\rightarrow~45\%$ of the center defined as failure
 - $\rightarrow~$ next 10% defined as success
 - $\rightarrow~{\rm everything}$ else defined as normal
- $\rightarrow\,$ Pro: Constant possibility for successful outcomes per dimension
- → Con: Volumetric percentage for successes decreases per dimension (2D: 10%, 3D: 7.5%, 4D: 5%, 5D: 3.2%, 6D: 1.9%, ...)

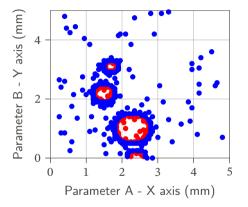
6D AND DUAL PTOI SIMULATION RESULTS



SUCCESS RATE EVALUATION

SPATIAL OPTIMIZATION EXPERIMENT SIMULATION

- $\rightarrow\,$ Spatial parameters seldom contain successes between failure and normal regions
- $\rightarrow\,$ To evaluate spatial parameters we simulated the scenario from Rais-Ali et. al^1

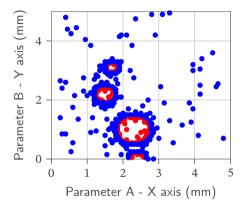


¹I. Rais-Ali, A. Bouvet, and S. Guilley, "Quantifying the speed-up offered by genetic algorithms during fault injection cartographies," in 2022 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2022, pp. 61–72.

[©] Marius Eggert, Marc Stöttinger

SPATIAL OPTIMIZATION EXPERIMENT SIMULATION

- $\rightarrow\,$ Spatial parameters seldom contain successes between failure and normal regions
- $\rightarrow\,$ To evaluate spatial parameters we simulated the scenario from Rais-Ali et. al^1
- $\rightarrow\,$ Our method successfully identified all regions
- ightarrow Currently no exploration of the failure regions

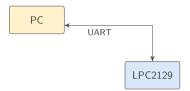


¹I. Rais-Ali, A. Bouvet, and S. Guilley, "Quantifying the speed-up offered by genetic algorithms during fault injection cartographies," in 2022 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2022, pp. 61–72.

[©] Marius Eggert, Marc Stöttinger

SPATIAL OPTIMIZATION EXPERIMENT SIMULATION

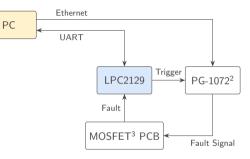
- $\rightarrow\,$ Spatial parameters seldom contain successes between failure and normal regions
- $\rightarrow\,$ To evaluate spatial parameters we simulated the scenario from Rais-Ali et. al^1
- $\rightarrow\,$ Our method successfully identified all regions
- ightarrow Currently no exploration of the failure regions
- $\rightarrow\,$ Idea: Test edges between failures after a certain point limit



¹I. Rais-Ali, A. Bouvet, and S. Guilley, "Quantifying the speed-up offered by genetic algorithms during fault injection cartographies," in 2022 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2022, pp. 61–72.

[©] Marius Eggert, Marc Stöttinger

EXPERIMENTAL RESULTS


- \rightarrow Target: LPC2129¹
 - $\rightarrow\,$ Implements simple counting loop
 - $\rightarrow~$ Commands and results sent over UART
 - $\rightarrow\,$ GPIO indicates operation start

 $[\]label{eq:linear} $$ $ 1 ttps://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580\#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc2000-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-mcus/lpc200-arm7:MC_71580#/deneral-purpose-$

EXPERIMENTAL RESULTS

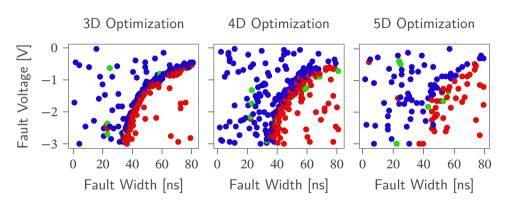
- \rightarrow Target: LPC2129¹
 - $\rightarrow\,$ Implements simple counting loop
 - ightarrow Commands and results sent over UART
 - $\rightarrow~{\sf GPIO}$ indicates operation start
- $\rightarrow\,$ Attack: Voltage glitching
 - $\rightarrow\,$ Adjustable core, I/O and fault voltage
 - $\rightarrow~$ Variable fault width and delay
 - ightarrow Counting errors are interpreted as success

 $^{^{2} {\}tt https://www.activetechnologies.it/pulse_rider_pg-1072_pg1074_revb/$

 $^{^{3} {\}rm https://www.infineon.com/cms/en/product/power/mosfet/n-channel/irf7807z/}$

EXPERIMENTAL RESULTS

- \rightarrow Target: LPC2129¹
 - $\rightarrow\,$ Implements simple counting loop
 - ightarrow Commands and results sent over UART
 - $\rightarrow~{\rm GPIO}$ indicates operation start
- $\rightarrow\,$ Attack: Voltage glitching
 - $\rightarrow\,$ Adjustable core, I/O and fault voltage
 - $\rightarrow\,$ Variable fault width and delay
 - ightarrow Counting errors are interpreted as success



 $^{^{2} {\}tt https://www.activetechnologies.it/pulse_rider_pg-1072_pg1074_revb/$

³https://www.infineon.com/cms/en/product/power/mosfet/n-channel/irf7807z/

⁴https://www.keysight.com/de/de/support/E36312A/80w-triple-output-power-supply-6v-5a-2x-25v-1a.html

EXPERIMENTAL RESULTS

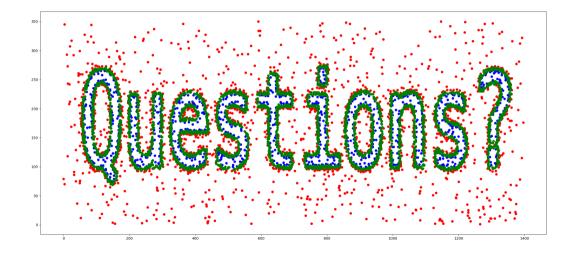
3D: Fault Voltage, Fault Width, Fault Delay4D: Fault Voltage, Fault Width, Fault Delay, Core Voltage5D: Fault Voltage, Fault Width, Fault Delay, Core Voltage, I/O Voltage

CONTRIBUTIONS & DISCUSSION

ightarrow Contribution

- $\rightarrow\,$ Novel semi-deterministic method for identifying polytopes of interest
- $\rightarrow\,$ Effectiveness demonstrated with simulations and experiments
- $\rightarrow~$ No restriction of parameters required
- $\rightarrow~$ Can handle arbitrary result shapes

CONTRIBUTIONS & DISCUSSION


ightarrow Contribution

- $\rightarrow\,$ Novel semi-deterministic method for identifying polytopes of interest
- $\rightarrow\,$ Effectiveness demonstrated with simulations and experiments
- $\rightarrow~$ No restriction of parameters required
- $\rightarrow~{\rm Can}$ handle arbitrary result shapes
- \rightarrow Discussion
 - $\rightarrow\,$ Focus on the border region, thus only outlines are identified
 - $\rightarrow\,$ For multiple interesting regions a random point selection is required
 - $\rightarrow\,$ High computation time for large number of input points in higher dimensions

FUTURE WORK

- $\rightarrow\,$ Calculation speed-up in higher dimensions
- $\rightarrow\,$ Likelihood evaluation for single successful parameter combinations
- $\rightarrow\,$ Combination with heuristic approaches
- $\rightarrow\,$ Restricting point selection to account parameter adjustment times

THANK YOU!

